

Rhodium-Catalyzed Diarylation of Oxalates Using Arylboron Compounds

Sawako Miyamura, Tetsuya Satoh,* and Masahiro Miura*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

> satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp

Received December 21, 2006

Dialkyl oxalates undergo selective diarylation on one of their carbonyl carbons upon treatment with arylboron reagents in the presence of a rhodium catalyst to give the corresponding α -hydroxydiarylacetates. Under similar conditions, the arylation of benzoylformate and benzil also proceeds efficiently.

The rhodium-catalyzed nucleophilic addition of organoboron and -stannane reagents to carbonyl compounds is now recognized to be a highly useful tool for alcohol synthesis (Scheme 1).¹ The mild, weakly nucleophilic organometallic reagents are effectively activated under rhodium catalysis to react readily with aldehydes (\mathbb{R}^1 or $\mathbb{R}^2 = \mathbb{H}$)² and structurally or electronically activated ketones (\mathbb{R}^1 , $\mathbb{R}^2 = -(\mathbb{C}\mathbb{H}_2)_3$ -;³ \mathbb{R}^1 or $\mathbb{R}^2 = \mathbb{C}\mathbb{O}\mathbb{R}'$;⁴ etc.).

Recently, we succeeded in conducting the intermolecular arylation of relatively less reactive electrophiles such as unactivated ketones as well as imines and nitriles under suitable conditions.⁵ In the course of our study of rhodium-catalyzed arylation reactions,⁶ it has been found that dialkyl oxalates undergo diarylation selectively upon treatment with arylboron SCHEME 1

reagents to give the corresponding α -hydroxydiarylacetates.⁷ This is a rare example of rhodium-catalyzed intermolecular arylation on the carbonyl carbon of esters.⁸ α -Hydroxyesters are useful materials as the synthetic intermediates of certain carbo- and heterocyclic compounds, as well as for other applications including delivery systems of cosmetic and pharmaceutical agents.⁹ In addition, related α -dicarbonyl compounds, benzoylformate and benzil, have also been found to undergo monophenylation by the rhodium catalysis.

In an initial attempt, diethyl oxalate (1a) (1 mmol) was treated with sodium tetrakis(4-methylphenyl)borate (2a) (0.5 mmol) under conditions similar to those employed for the reaction of ketones.⁵ Thus, in the presence of [RhCl(cod)]₂ (0.005 mmol) and NH₄Cl (1 mmol) as a catalyst and a proton source, respectively, in refluxing o-xylene at 120 °C for 13 h, ethyl 2-hydroxy-2,2-bis(4-methylphenyl)acetate (3a) was formed in 75% yield (Table 1, entry 1). The addition of phenol in place of NH₄Cl completely suppressed the reaction (entry 2). The present arylation was found to proceed effectively without any additives to afford 3a in 87% yield (entry 3). The hydroxy complex [Rh(OH)(cod)]2 was as effective as [RhCl(cod)]2 (entry 4), while the activity of Rh(acac)(cod) was very low (entry 5). It was confirmed that the reaction does not proceed at all without any rhodium catalyst. At a lower or higher temperature, the yield of 3a decreased (entries 6 and 7). The reaction proceeded with somewhat reduced efficiency in refluxing toluene (entry 8), while a polar solvent, 1,4-dioxane, was found to be unsuitable (entry 9).

Dimethyl- (1b) and di(*n*-butyl) oxalate (1c) also underwent the diarylation upon treatment with 2a under the optimized conditions to give the corresponding α -hydroxyacetates in good yields (Scheme 2). In contrast, a sterically hindered ester, di-(*tert*-butyl) oxalate (1d), did not react with 2a at all.

Table 2 summarizes the results for the reactions of di(*n*-butyl) oxalate (1c) with sodium tetraarylborate 2 or 5,5-dimethyl-2-aryl[1,3,2]dioxaborinane 4. Tetraphenylborate and tetrakis(4-fluorophenyl)borate reacted efficiently to give 3d and 3e in 68 and 137% yields, respectively. In the latter case, the yield exceeding 100% indicates that more than one aryl group in 2 can be utilized. The reactions with arylboronates 4 also proceeded to give the corresponding diarylated products. The addition of KF was essential for the reaction with 4 to occur.

A plausible mechanism for the reaction of oxalates 1 with arylboron reagents 2 or 4 is illustrated in Scheme 3. The reaction may proceed via nucleophilic addition of an arylrhodium

Reviews: (a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
 Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.

⁽²⁾ For early examples, see: (a) Oi, S.; Moro, M.; Inoue, Y. Chem. Commun. 1997, 1621. (b) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279. (c) Fürstner, A.; Krause, H. Adv. Synth. Catal. 2001, 343, 343.

^{(3) (}a) Matsuda, T.; Makino, M.; Murakami, M. Org. Lett. 2004, 6, 1257.
(b) Matsuda, T.; Makino, M.; Murakami, M. Bull. Chem. Soc. Jpn. 2005, 78, 1528.

^{(4) (}a) Oi, S.; Moro, M.; Fukuhara, H.; Kawanishi, T.; Inoue, Y. *Tetrahedron* **2003**, *59*, 4351. (b) Shintani, R.; Inoue, M.; Hayashi, T. *Angew. Chem., Int. Ed.* **2006**, *45*, 3353. For Rh-catalyzed vinylation of α -ketoesters, see: (c) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. *J. Am. Chem. Soc.* **2006**, *128*, 718. (d) Kong, J. R.; Krische, M. J. *J. Am. Chem. Soc.* **2006**, *128*, 16040.

⁽⁵⁾ Ueura, K.; Miyamura, S.; Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821.

^{(6) (}a) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. **2000**, *122*, 10464. (b) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Organomet. Chem. **2002**, 648, 297. (c) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. **2003**, 42, 4672. (d) Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Adv. Synth. Catal. **2004**, 346, 1765. (e) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. **2005**, 7, 2229.

⁽⁷⁾ The stepwise diarylation of diethyl oxalate using Grignard reagents has been reported: Levy, A.; Rakowitz, A.; Mills, N. S. J. Org. Chem. **2003**, 68, 3990.

⁽⁸⁾ For an intramolecular version, see: Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390.

^{(9) (}a) Flavin, M. T.; Lu, M. C.; Thompson, E. B.; Bhargava, H. N. J. Med. Chem. 1987, 30, 278. (b) Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1988, 110, 1862. (c) Sydorenko, N.; Hsung, R. P.; Saleh Darwish, O.; Hahn, J. M.; Liu, J. Org. Chem. 2004, 69, 6732. (d) Ikemoto, K.; Yamada, K. Jpn. Kokai Tokkyo Koho JP2004239986, 2004. (e) Gupta, S. K. U.S. Patent Appl. 2006110415, 2006.

TABLE 1.	Reaction	of Diethyl	Oxalate	(1a)	with	Sodium
Tetrakis(4-m	iethylphei	nyl)borate	$(2a)^a$			

EtO	OEt + NaBA 0 2a a Ar = 4-	r ₄ — Rh-ca <i>o</i> -xyler MeC ₆ H ₄	t. ─────Ar∽ ∩e A	OH ↓ OEt Nr 0 3a
entry	Rh catalyst	temp (°C)	time (h)	% yield of 3a ^b
1^c	[RhCl(cod)]2	120	13	75 (51)
2^d	[RhCl(cod)] ₂	120	11	0
3	[RhCl(cod)] ₂	120	13	87 (57)
4	[Rh(OH)(cod)]2	120	11	81
5	Rh(acac)(cod)	120	8	7
6	[RhCl(cod)] ₂	100	11	45
7	[RhCl(cod)] ₂	140	11	69
8^e	[RhCl(cod)] ₂	120	12	65
9 ^f	[RhCl(cod)] ₂	120	6	9

^{*a*} Reaction conditions: **[1a**]:**[2a**]:**[Rh** catalyst] = 1:0.5:0.005 (in mmol), in *o*-xylene (5 mL) under N₂. ^{*b*} GLC yield based on the amount of **2a** used. Value in parentheses indicates yield after purification. ^{*c*} With NH₄Cl (1 mmol). ^{*d*} With phenol (1 mmol). ^{*e*} In refluxing toluene. ^{*f*} In refluxing 1,4dioxane.

^{*a*} Reaction conditions: [1]:[2a]:[[RhCl(cod)]₂] = 1:0.5:0.005 (in mmol), in *o*-xylene (5 mL) under N₂ at 120 °C for 12 h. ^{*b*}GLC yield based on the amount of 2a used. Value in parentheses indicates yield after purification.

intermediate **A**, which is generated by transmetalation of a Rh-(I)X species with **2** or **4**, to one of the carbonyl groups of **1** to give an intermediate **B**. Then, the elimination of alkoxyrhodium **C** from **B** gives α -ketoester **5**. The alkoxyrhodium **C** undergoes transmetalation with **2** or **4** to regenerate **A**. Under the present reaction conditions, α -ketoester **5** may also undergo nucleophilic addition of **A** on its keto carbonyl group to yield **D**,^{4a} which releases the borate of the final diarylated product **3** and regenerates **A** via transmetalation. Each transmetalation step with **4** may be promoted by added KF.^{1a,10}

On the basis of the consideration described above, the phenylation of an α -ketoester by the present procedure was next attempted. Thus, ethyl benzoylformate (**5a**) was treated with **2b** in the presence of [RhCl(cod)]₂ in *o*-xylene at 120 °C for 9 h (Scheme 4). As expected, a monophenylated product, ethyl 2-hydroxy-2,2-diphenylacetate (**7**), was formed in 74% yield. The yield of **7** was significantly enhanced by the addition of NH₄Cl and PhOH. Particularly, using the latter additive, **7** was obtained in 168% yield, which indicates the participation of more than one phenyl group of **2b** in the reaction. In contrast, as described above, the reaction of diethyl oxalate **1a** did not proceed in the presence of PhOH (entry 2 in Table 1). These results indicate that, in the diarylation of oxalates **1**, the additive suppresses the first arylation from **1** to **5**, although it may possess high potential to promote the second step from **5** to **3**. In

(10) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

^{*a*} Reaction conditions: **[1c]**:**[2** or **4**]:[[RhCl(cod)]₂] = 1:0.5 or 1:0.005 (in mmol), in *o*-xylene (5 mL) under N₂ at 120 °C. ^{*b*} GLC yield based on the amount of **2** or **4** used. Value in parentheses indicates yield after purification. ^{*c*} For the reaction with **4**, KF (1 mmol) was added.

SCHEME 3

addition, **5a** was found to react effectively with phenylboronic acid (**6**) in the presence of KF to give **7** in 93% yield within 2 h.¹¹

A related α -diketone, benzil (**8**), also underwent the phenylation in the present reaction system using **2b**, [RhCl(cod)]₂, and PhOH as the phenylation reagent, catalyst, and promoter, respectively, to give 2-hydroxy-2,2-diphenylacetophenone (**9**) in an excellent yield (Scheme 5).^{4a} One of the major roles of

⁽¹¹⁾ Very recently, the palladium-catalyzed version was reported: He, P.; Lu, Y.; Dong, C.-G.; Hu, Q.-S. *Org. Lett.* **2007**, *9*, 343.

SCHEME 4^a

^{*a*} Reaction conditions: **[5a]**:**[2b** or **6**]:[[RhCl(cod)]₂]:[additive] = 1:0.5: 0.005:1 (in mmol), in *o*-xylene (5 mL) under N₂ at 120 °C for 9 h. ^{*b*}GLC yield based on the amount of **2b** or **6** used. Value in parentheses indicates yield after purification. ^{*c*}For 2 h.

SCHEME 5^a

Ph Ph 8	+	NaBPh ₄ 2b	[RhCl(cod)] ₂	OH Ph Ph Ph 9
			additive	% yield ^b
			_	83
			NH₄CI	92
			PhOH	199 (157)

^{*a*} Reaction conditions: **[8]**:[**2b**][[RhCl(cod)]₂]:[additive] = 1:0.5:0.005:1 (in mmol), in *o*-xylene (5 mL) under N₂ at 140 °C for 6-12 h. ^{*b*}GLC yield based on the amount of **2b** used. Value in parentheses indicates yield after purification.

added PhOH would be the protonolysis of intermediary alkoxyrhodium species to make an effective bypath.^{5,6e} However, the detrimental effect in the reaction of **1** is not accountable at the present stage.

In summary, we have shown that dialkyl oxalates undergo selective diarylation by treatment with arylboron reagents in the presence of a rhodium catalyst system. This appears to provide a useful, general synthetic route leading to α -hydroxy-diarylacetates. It has also been confirmed that benzoylformate as well as benzil also undergoes arylation effectively under similar conditions.

Experimental Section

Ethyl 2-Hydroxy-2,2-bis(4-methylphenyl)acetate (3a). To a 20 mL two-necked flask were added diethyl oxalate (1a) (1 mmol, 146 mg), sodium tetrakis(4-methylphenyl)borate (2a) (0.5 mmol, 199 mg), [RhCl(cod)]2 (0.005 mmol, 2.5 mg), 1-methylnaphthalene (ca. 60 mg) as internal standard, and o-xylene (5 mL). The resulting mixture was stirred under N2 (balloon) at 120 °C (bath temperature) for 13 h. After cooling, analysis of the mixture by GC confirmed formation of compound 3a (61 mg, 87%). The product (40 mg, 57%) was also isolated by extraction of the mixture with ether, evaporation of the solvents, and thin-layer chromatography on silica gel using hexane/ethyl acetate (90:10, v/v). Compound 3a:12 oil; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, J = 7.3 Hz, 3H), 2.33 (s, 6H), 4.15 (s, 1H), 4.31 (q, J = 7.0 Hz, 2H), 7.14 (d, J = 8.4 Hz, 4H), 7.31 (d, J = 8.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.1, 62.8, 80.6, 127.3, 128.7, 137.7, 139.3, 174.7; MS m/z 284 (M⁺).

Acknowledgment. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Standard experimental procedure and characterization data of products. This material is available free of charge via the Internet at http://pubs.acs.org. JO062628J

(12) Avramoff, M.; Sprinzak, Y. J. Am. Chem. Soc. 1963, 85, 1655.